Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 60(42): 3200-3212, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34633183

RESUMEN

Fatty acid photodecarboxylase (FAP), one of the few natural photoenzymes characterized so far, is a promising biocatalyst for lipid-to-hydrocarbon conversion using light. However, the optimum supramolecular organization under which the fatty acid (FA) substrate should be presented to FAP has not been addressed. Using palmitic acid embedded in phospholipid liposomes, phospholipid-stabilized microemulsions, and mixed micelles, we show that FAP displays a preference for FAs present in liposomes and at the surface of microemulsions. The kinetics of adsorption onto phospholipid and galactolipid monomolecular films further suggests the ability of FAP to bind to and penetrate into membranes, with a higher affinity in the presence of FAs. The FAP structure reveals a potential interfacial recognition site with clusters of hydrophobic and basic residues surrounding the active site entrance. The resulting dipolar moment suggests the orientation of FAP at negatively charged interfaces. These findings provide important clues about the mode of action of FAP and the development of FAP-based bioconversion processes.


Asunto(s)
Proteínas Algáceas/química , Carboxiliasas/química , Adsorción , Animales , Biocatálisis , Bovinos , Chlorella/enzimología , Emulsiones/química , Cinética , Micelas , Ácido Palmítico/química , Albúmina Sérica Bovina/química , Liposomas Unilamelares/química , Agua/química , beta-Ciclodextrinas/química
2.
PLoS Biol ; 18(6): e3000728, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32516311

RESUMEN

The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated ß-linked tetrasaccharide repeats. Both BPS and exopolysaccharide (EPS) are produced by dedicated Wzx/Wzy-dependent polysaccharide-assembly pathways distinct from that responsible for spore-coat assembly. While EPS is preferentially produced at the lower-density swarm periphery, BPS production is favored in the higher-density swarm interior; this is consistent with the former being known to stimulate T4P retraction needed for community expansion and a function for the latter in promoting initial cell dispersal. Together, these data reveal the central role of secreted polysaccharides in the intricate behaviors coordinating bacterial multicellularity.


Asunto(s)
Myxococcus xanthus/citología , Myxococcus xanthus/metabolismo , Polisacáridos Bacterianos/metabolismo , Acetilación , Vías Biosintéticas/genética , Espectroscopía de Resonancia Magnética con Carbono-13 , Membrana Celular/metabolismo , Familia de Multigenes , Myxococcus xanthus/genética , Polisacáridos Bacterianos/química , Espectroscopía de Protones por Resonancia Magnética , Tensoactivos/metabolismo
3.
Bioorg Chem ; 81: 414-424, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30212765

RESUMEN

A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/química , Oxadiazoles/farmacología , Animales , Diseño de Fármacos , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Células RAW 264.7 , Tuberculosis/tratamiento farmacológico
4.
PLoS Pathog ; 14(1): e1006814, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29320578

RESUMEN

Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 µM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects.


Asunto(s)
Membrana Dobles de Lípidos , Macrólidos/farmacología , Microdominios de Membrana/efectos de los fármacos , Úlcera de Buruli/microbiología , Adhesión Celular/efectos de los fármacos , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mycobacterium ulcerans/química , Mycobacterium ulcerans/efectos de los fármacos , Mycobacterium ulcerans/ultraestructura , Tensoactivos/farmacología
5.
Biophys J ; 113(12): 2723-2735, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262365

RESUMEN

Intrinsically disordered proteins (IDPs) lack stable secondary and tertiary structure under physiological conditions in the absence of their biological partners and thus exist as dynamic ensembles of interconverting conformers, often highly soluble in water. However, in some cases, IDPs such as the ones involved in neurodegenerative diseases can form protein aggregates and their aggregation process may be triggered by the interaction with membranes. Although the interfacial behavior of globular proteins has been extensively studied, experimental data on IDPs at the air/water (A/W) and water/lipid interfaces are scarce. We studied here the intrinsically disordered C-terminal domain of the Hendra virus nucleoprotein (NTAIL) and compared its interfacial properties to those of lysozyme that is taken as a model globular protein of similar molecular mass. Adsorption of NTAIL at the A/W interface was studied in the absence and presence of phospholipids using Langmuir films, polarization modulated-infrared reflection-absorption spectroscopy, and an automated drop tensiometer for interfacial tension and elastic modulus determination with oscillating bubbles. NTAIL showed a significant surface activity, with a higher adsorption capacity at the A/W interface and penetration into egg phosphatidylcholine monolayer compared to lysozyme. Whereas lysozyme remains folded upon compression of the protein layer at the A/W interface and shows a quasi-pure elastic behavior, NTAIL shows a much higher molecular area and forms a highly viscoelastic film with a high dilational modulus. To our knowledge, a new disorder-to-order transition is thus observed for the NTAIL protein that folds into an antiparallel ß-sheet at the A/W interface and presents strong intermolecular interactions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Adsorción , Aire , Muramidasa/química , Proteínas de la Nucleocápside , Fosfatidilcolinas/química , Conformación Proteica , Agua/química
6.
Sci Rep ; 7(1): 11751, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924204

RESUMEN

A new class of Cyclophostin and Cyclipostins (CyC) analogs have been investigated against Mycobacterium tuberculosis H37Rv (M. tb) grown either in broth medium or inside macrophages. Our compounds displayed a diversity of action by acting either on extracellular M. tb bacterial growth only, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth with very low toxicity towards host macrophages. Among the eight potential CyCs identified, CyC 17 exhibited the best extracellular antitubercular activity (MIC50 = 500 nM). This compound was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 23 potential candidates, most of them being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA and HsaD, have previously been reported as essential for in vitro growth of M. tb and/or survival and persistence in macrophages. Overall, our findings support the assumption that CyC 17 may thus represent a novel class of multi-target inhibitor leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes participating in important physiological processes.


Asunto(s)
Antituberculosos , Macrófagos/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Compuestos Organofosforados , Tuberculosis/tratamiento farmacológico , Antituberculosos/química , Antituberculosos/farmacología , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Tuberculosis/metabolismo , Tuberculosis/patología
7.
Eur J Med Chem ; 123: 834-848, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27543878

RESUMEN

Based on a previous study and in silico molecular docking experiments, we have designed and synthesized a new series of ten 5-Alkoxy-N-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one derivatives (RmPPOX). These molecules were further evaluated as selective and potent inhibitors of mammalian digestive lipases: purified dog gastric lipase (DGL) and guinea pig pancreatic lipase related protein 2 (GPLRP2), as well as porcine (PPL) and human (HPL) pancreatic lipases contained in porcine pancreatic extracts (PPE) and human pancreatic juices (HPJ), respectively. These compounds were found to strongly discriminate classical pancreatic lipases (poorly inhibited) from gastric lipase (fully inhibited). Among them, the 5-(2-(Benzyloxy)ethoxy)-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one (BemPPOX) was identified as the most potent inhibitor of DGL, even more active than the FDA-approved drug Orlistat. BemPPOX and Orlistat were further compared in vitro in the course of test meal digestion, and in vivo with a mesenteric lymph duct cannulated rat model to evaluate their respective impacts on fat absorption. While Orlistat inhibited both gastric and duodenal lipolysis and drastically reduced fat absorption in rats, BemPPOX showed a specific action on gastric lipolysis that slowed down the overall lipolysis process and led to a subsequent reduction of around 55% of the intestinal absorption of fatty acids compared to controls. All these data promote BemPPOX as a potent candidate to efficiently regulate the gastrointestinal lipolysis, and to investigate its link with satiety mechanisms and therefore develop new strategies to "fight against obesity".


Asunto(s)
Digestión/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Mucosa Gástrica/metabolismo , Absorción Intestinal/efectos de los fármacos , Lipólisis/efectos de los fármacos , Oxadiazoles/farmacología , Estómago/efectos de los fármacos , Animales , Perros , Cobayas , Humanos , Cinética , Lipasa/antagonistas & inhibidores , Lipasa/química , Lipasa/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Conformación Proteica , Ratas
8.
Food Funct ; 5(7): 1409-21, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24777447

RESUMEN

CITREM is an emulsifier used in the food industry and contains citric acid esters of mono- and diglycerides (GCFE). It is generally recognized as safe but no publication on its digestibility under gastrointestinal conditions and impact on fat digestion was available. It was shown here that fatty acids are released from CITREM by gastric lipase, pancreatic lipase, pancreatic-lipase-related protein 2 and carboxyl ester hydrolase. A two-step in vitro digestion model mimicking lipolysis in the stomach and upper small intestine of term and preterm infants was then used to evaluate the digestibility of CITREM alone, CITREM-containing infant formula and fat emulsions, and isolated GCFE fractions. Overall, it was shown that fat digestion is not significantly changed by the presence of CITREM, and fatty acids contained in CITREM compounds are released to a large extent by lipases. Nevertheless, undigestible water-soluble compounds containing glycerol and citric acid units were identified, indicating that the ester bond between citric acid and glycerol is not fully hydrolyzed throughout the proposed digestion.


Asunto(s)
Citratos/metabolismo , Diglicéridos/metabolismo , Emulsionantes/metabolismo , Ésteres/metabolismo , Fórmulas Infantiles/química , Monoglicéridos/metabolismo , Carboxilesterasa/metabolismo , Digestión , Emulsiones/química , Ácidos Grasos/metabolismo , Tracto Gastrointestinal/enzimología , Humanos , Lactante , Lipasa/metabolismo , Lipólisis
9.
Biochimie ; 102: 145-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24650780

RESUMEN

Lipolytic activities of Yarrowia lipolytica LIP2 lipase (YLLIP2), human pancreatic (HPL) and dog gastric (DGL) lipases were first compared using lecithin-stabilized triacylglycerol (TAG) emulsions (Intralipid) at various pH and bile salt concentrations. Like DGL, YLLIP2 was able to hydrolyze TAG droplets covered by a lecithin monolayer, while HPL was not directly active on that substrate. These results were in good agreement with the respective kinetics of adsorption on phosphatidylcholine (PC) monomolecular films of the same three lipases, YLLIP2 being the most tensioactive lipase. YLLIP2 adsorption onto a PC monolayer spread at the air/water interface was influenced by pH-dependent changes in the enzyme/lipid interfacial association constant (KAds) which was optimum at pH 6.0 on long-chain egg PC monolayer, and at pH 5.0 on medium chain dilauroylphosphatidylcholine film. Using substrate monolayers (1,2-dicaprin, trioctanoin), YLLIP2 displayed the highest lipolytic activities on both substrates in the 25-35 mN m(-1) surface pressure range. YLLIP2 was active in a large pH range and displayed a pH-dependent activity profile combining DGL and HPL features at pH values found in the stomach (pH 3-5) and in the intestine (pH 6-7), respectively. The apparent maximum activity of YLLIP2 was observed at acidic pH 4-6 and was therefore well correlated with an efficient interfacial binding at these pH levels, whatever the type of interfaces (Intralipid emulsions, substrate or PC monolayers). All these findings support the use of YLLIP2 in enzyme replacement therapy for the treatment of pancreatic exocrine insufficiency, a pathological situation in which an acidification of intestinal contents occurs.


Asunto(s)
Estabilidad de Enzimas/genética , Insuficiencia Pancreática Exocrina/terapia , Proteínas Fúngicas/química , Lipasa/química , Yarrowia/enzimología , Animales , Ácidos y Sales Biliares/toxicidad , Perros , Terapia de Reemplazo Enzimático , Insuficiencia Pancreática Exocrina/enzimología , Insuficiencia Pancreática Exocrina/patología , Proteínas Fúngicas/metabolismo , Tracto Gastrointestinal/enzimología , Humanos , Concentración de Iones de Hidrógeno , Lipasa/metabolismo
10.
Appl Microbiol Biotechnol ; 98(12): 5507-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24531271

RESUMEN

Glucuronoyl esterases (GEs) are recently discovered enzymes that are suggested to cleave the ester bond between lignin alcohols and xylan-bound 4-O-methyl-D-glucuronic acid. Although their potential use for enhanced enzymatic biomass degradation and synthesis of valuable chemicals renders them attractive research targets for biotechnological applications, the difficulty to purify natural fractions of lignin-carbohydrate complexes hampers the characterization of fungal GEs. In this work, we report the synthesis of three aryl alkyl or alkenyl D-glucuronate esters using lipase B from Candida antarctica (CALB) and their use to determine the kinetic parameters of two GEs, StGE2 from the thermophilic fungus Myceliophthora thermophila (syn. Sporotrichum thermophile) and PaGE1 from the coprophilous fungus Podospora anserina. PaGE1 was functionally expressed in the methylotrophic yeast Pichia pastoris under the transcriptional control of the alcohol oxidase (AOX1) promoter and purified to its homogeneity (63 kDa). The three D-glucuronate esters contain an aromatic UV-absorbing phenol group that facilitates the quantification of their enzymatic hydrolysis by HPLC. Both enzymes were able to hydrolyze the synthetic esters with a pronounced preference towards the cinnamyl-D-glucuronate ester. The experimental results were corroborated by computational docking of the synthesized substrate analogues. We show that the nature of the alcohol portion of the hydrolyzed ester influences the catalytic efficiency of the two GEs.


Asunto(s)
Esterasas/metabolismo , Proteínas Fúngicas/metabolismo , Podospora/enzimología , Sordariales/enzimología , Biocatálisis , Esterasas/química , Esterasas/genética , Ésteres/química , Ésteres/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Estructura Molecular , Podospora/química , Podospora/genética , Sordariales/química , Sordariales/genética , Especificidad por Sustrato
11.
Biochimie ; 101: 221-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24508576

RESUMEN

The lipolysis reaction carried out by lipases at the water-lipid interface is a complex process including enzyme conformational changes, adsorption/desorption equilibrium and substrate hydrolysis. Mixed monomolecular films of the lipase inhibitor Orlistat and 1,2-dicaprin were used here to investigate the adsorption of dog gastric lipase (DGL) followed by the hydrolysis of 1,2-dicaprin. The combined study of these two essential catalysis steps was made possible thanks to the highest affinity of DGL for Orlistat than 1,2-dicaprin and the fact that the inhibition of DGL by Orlistat is reversible. Upon DGL binding to mixed 1,2-dicaprin/Orlistat monolayers, an increase in surface pressure reflecting lipase adsorption was first recorded. Limited amounts of Orlistat allowed to maintain DGL inactive on 1,2-dicaprin during a period of time that was sufficient to determine DGL adsorption and desorption rate constants. A decrease in surface pressure reflecting 1,2-dicaprin hydrolysis and product desorption was observed after the slow hydrolysis of the covalent DGL-Orlistat complex was complete. The rate of 1,2-dicaprin hydrolysis was recorded using the surface barostat technique. Based on a kinetic model describing the inhibition by Orlistat and the activity of DGL on a mixed 1,2-dicaprin/Orlistat monolayer spread at the air-water interface combined with surface pressure measurements, it was possible to monitor DGL adsorption at the lipid-water interface and substrate hydrolysis in the course of a single experiment. This allowed to assess the kcat/KM* ratio for DGL acting on 1,2-dicaprin monolayer, after showing that mixed monolayers containing a low fraction of Orlistat were similar to pure 1,2-dicaprin monolayers.


Asunto(s)
Lactonas/química , Lipasa/química , Lípidos/química , Adsorción , Animales , Diglicéridos/química , Perros , Hidrólisis , Cinética , Lipasa/antagonistas & inhibidores , Modelos Moleculares , Orlistat , Estómago/enzimología , Propiedades de Superficie , Agua/química
12.
Colloids Surf B Biointerfaces ; 111: 306-12, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23838197

RESUMEN

The access to kinetic parameters of lipolytic enzyme adsorption onto lipids is essential for a better understanding of interfacial enzymology and lipase-lipid interactions. The interfacial adsorption of dog gastric lipase (DGL) was monitored as a function of pH and surface pressure (Π), independently from the catalytic activity, using non-hydrolysable 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) monomolecular films. The acid-stable DGL, which initiates fat digestion in the stomach, was then selected because its adsorption kinetics onto hydrophobic solid surfaces were already studied. This gastric lipase was therefore used as a model enzyme to validate both experimental and theoretical approaches. Results show that the adsorption process of DGL at the lipid/water interface depends on a pH-dependent adsorption equilibrium coefficient which is optimum at pH 5.0 (K(Ads) = 1.7 ± 0.05 × 10(8)M(-1)). KAds values further allowed an indirect estimation of the molar fraction (ΦE*(%), mol%) as well as the molecular area (AE*) of DGL adsorbed onto DLPC monolayer. Based on these data, a model for DGL adsorption onto DLPC monolayer at pH 5.0 is proposed for a surface pressure range of 15-25 mNm(-1).


Asunto(s)
Lipasa/metabolismo , Fosfatidilcolinas/química , Estómago/enzimología , Adsorción , Aire , Animales , Perros , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Presión , Unión Proteica , Temperatura , Agua
13.
Mol Biosyst ; 9(6): 1401-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23483086

RESUMEN

Owing to the large panel of biological functions of peptides and their high specificity and potency, the development of peptide-based therapeutic and diagnostic tools has received increasing interest. Peptide amphiphiles (PAs) are an emerging class of molecules in which a bioactive peptide is covalently conjugated to a hydrophobic moiety. Due to the coexistence in the molecule of a hydrophilic peptide sequence and a hydrophobic group, PAs are able to self-assemble spontaneously into a variety of nanostructures, such as monolayers, bilayers, and vesicles. In this work we have synthesized a disordered peptide, henceforth called R11, and two lipophilic derivatives of R11 bearing two alkyl chains, connected or not to R11 by an ethoxylic-based linker. The structural properties in solution of these new PAs were investigated using CD and NMR. R11 lipophilic derivatives display typical features of PAs, such as the formation of micelles and unilamellar vesicles. In addition, their surface properties were studied using Langmuir monomolecular films and the results obtained support the formation of molecular aggregates upon compression of the PA films. The presence of the alkyl chains induces not only the self-assembly of these new PAs into supramolecular aggregates but also a gain of structure within the disordered peptide.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Nanoestructuras/química , Péptidos/química , Tensoactivos/química , Dicroismo Circular , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas , Micelas , Resonancia Magnética Nuclear Biomolecular , Péptidos/análisis , Péptidos/síntesis química , Unión Proteica , Conformación Proteica , Propiedades de Superficie
14.
Biochimie ; 95(1): 51-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22967966

RESUMEN

Group X secreted phospholipase A(2) (GX sPLA(2)) plays important physiological roles in the gastrointestinal tract, in immune and sperm cells and is involved in several types of inflammatory diseases. It is secreted either as a mature enzyme or as a mixture of proenzyme (with a basic 11 amino acid propeptide) and mature enzyme. The role of the propeptide in the repression of sPLA(2) activity has been studied extensively using liposomes and micelles as model interfaces. These substrates are however not always suitable for detecting some fine tuning of lipolytic enzymes. In the present study, the monolayer technique is used to compare PLA(2) activity of recombinant mouse GX sPLA(2) (mGX) and its pro-form (PromGX) on monomolecular films of dilauroyl-phosphatidyl-ethanolamine (DLPE), -choline (DLPC) and -glycerol (DLPG). The PLA(2) activity and substrate specificity of mGX (PE ≈ PG > PC) were found to be surface pressure-dependent. mGX displayed a high activity on DLPE and DLPG but not on DLPC monolayers up to surface pressures corresponding to the lateral pressure of biological membranes (30-35 mN/m). Overall, the propeptide impaired the enzyme activity, particularly on DLPE whatever the surface pressure. However some conditions could be found where the propeptide had little effects on the repression of PLA(2) activity. In particular, both PromGX and mGX had similar activities on DLPG at a surface pressure of 30 mN/m. These findings show that PromGX can be potentially active depending on the presentation of the substrate (i.e., lipid packing) and one cannot exclude such an activity in a physiological context. A structural model of PromGX was built to investigate how the propeptide controls the activity of GX sPLA(2). This model shows that the propeptide is located within the interfacial binding site (i-face) and could disrupt both the interfacial binding of the enzyme and the access to the active site by steric hindrance.


Asunto(s)
Membrana Celular , Fosfolipasas A2 Grupo X , Péptidos , Fosfolípidos , Animales , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Fosfolipasas A2 Grupo X/química , Fosfolipasas A2 Grupo X/metabolismo , Hidrólisis , Liposomas/química , Masculino , Ratones , Micelas , Péptidos/química , Péptidos/metabolismo , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Especificidad por Sustrato , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...